已知y是x 的函数,自变量x的取值范围是x >0,下表是y与x 的几组对应值.
x | ··· | 1 | 2 | 3 | 5 | 7 | 9 | ··· |
y | ··· | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | ··· |
小腾根据学习一次函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:
(1)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为________;
②该函数的一条性质:__________________.
某医院研发了一种新药,试验药效时发现,如果成人按规定剂量服用,那么服药2小时后,血液中含药量最高,达每毫升6微克,接着逐渐衰减,10小时后血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示,当成人按规定剂量服药后:
(1)服药后几小时血液中含药量最高?达到每毫升血液中含药多少微克?
(2)在服药几个小时后,血液中的含药量逐渐升高?在几小时后,血液中的含药量逐渐衰减?
(3)服药后10小时时,血液中含药量是多少微克?
(4)服药几小时后即已无效?
小明在银行存入一笔零花钱,已知这种储蓄的年利率为n%,若设到期后的本息和(本金+利息)为y元,存入的时间为x(年).
(1)下列图中,哪个图像更能反映y与x之间的函数关系?从图中你能看出存入的本金是多少元?一年后的本息和是多少元?
(2)根据(1)的图像,求出y与x的函数表达式(不要求写出自变量取值范围),并求出两年后的本息和.
分析图中反映的变量之间的关系图像,想象一个适合它的实际情境.
某企业一月份的产值是1.5万元,计划今后每月增加0.2万元.若月份用x(月)表示,月产值用y(万元)表示,试写出y与x之间的函数关系式,并指出其中的常量和变量.
某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:
卖出价格x(元/件) | 50 | 51 | 52 | 53 |
销售量P(件) | 500 | 490 | 480 | 470 |
则P与x的函数关系式为________,当卖出价格为60元时,销售量为_______件.