在1,0,﹣2,﹣1中,最大的数是( )
A. 1 B. 0 C. ﹣2 D. ﹣1
(11·大连)(本题10分)如图10,某容器由A、B、C三个长方体组成,其中
A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的(容器各面的厚
度忽略不计).现以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止.图11是注水
全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.
⑴在注水过程中,注满A所用时间为______s,再注满B又用了_____s;
⑵求A的高度hA及注水的速度v;
⑶求注满容器所需时间及容器的高度.
为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时,采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费,小兰家四、五月份的用水量及收费情况如下表:
月份 | 用水量(吨) | 水费(元) |
4 | 22 | 51 |
5 | 20 | 45 |
(1)求该市每吨水的基本价和市场价;
(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式;
(3)小兰家6月份的用水量为26吨,则她家要交水费多少元?
已知y是x 的函数,自变量x的取值范围是x >0,下表是y与x 的几组对应值.
x | ··· | 1 | 2 | 3 | 5 | 7 | 9 | ··· |
y | ··· | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | ··· |
小腾根据学习一次函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:
(1)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为________;
②该函数的一条性质:__________________.
某医院研发了一种新药,试验药效时发现,如果成人按规定剂量服用,那么服药2小时后,血液中含药量最高,达每毫升6微克,接着逐渐衰减,10小时后血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示,当成人按规定剂量服药后:
(1)服药后几小时血液中含药量最高?达到每毫升血液中含药多少微克?
(2)在服药几个小时后,血液中的含药量逐渐升高?在几小时后,血液中的含药量逐渐衰减?
(3)服药后10小时时,血液中含药量是多少微克?
(4)服药几小时后即已无效?
小明在银行存入一笔零花钱,已知这种储蓄的年利率为n%,若设到期后的本息和(本金+利息)为y元,存入的时间为x(年).
(1)下列图中,哪个图像更能反映y与x之间的函数关系?从图中你能看出存入的本金是多少元?一年后的本息和是多少元?
(2)根据(1)的图像,求出y与x的函数表达式(不要求写出自变量取值范围),并求出两年后的本息和.