满分5 > 初中数学试题 >

如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D...

如图,抛物线的图象与x轴交于AB两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

1)求ABC的坐标;

2)点M为线段AB上一点(点M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQ∥AB交抛物线于点Q,过点QQN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;

3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点Fy轴的平行线,与直线AC交于点G(点G在点F的上方).FG=DQ,求点F的坐标.

 

(1)A(-3,0),B(1,0),C(0,3); (2);(3)或(1,0). 【解析】 试题(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标; (2)设M点横坐标为m,则PM=,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周长d=,将配方,由二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积; (3)设F(n,),由已知若FG=DQ,即可求得. 试题解析:【解析】 (1)由抛物线可知,C(0,3),令y=0,则,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0); (2)由抛物线可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=()×2==,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=AM•EM=; (3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入,解得y=4,∴D(﹣1,4),∴DQ=DC=,∵FG=DQ,∴FG=4,设F(n,),则G(n,n+3),∵点G在点F的上方,∴=4,解得:n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).
复制答案
考点分析:
相关试题推荐

如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.

(1)当t=2时,求线段PQ的长度;

(2)当t为何值时,△PCQ的面积等于5cm2

(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.

 

查看答案

如图,O为坐标原点,点A(﹣1,5)和点B(m,﹣1)均在反比例函数图象上

(1)求m,k的值;

(2)当x满足什么条件时,﹣x+4>﹣

(3)P为y轴上一点,若△ABP的面积是△ABO面积的2倍,直接写出点P的坐标.

 

查看答案

某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:

x/元

15

20

25

y/件

25

20

15

 

已知日销售量y是销售价x的一次函数.

(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;

(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?

 

查看答案

已知,如图,在坡顶A处的同一水平面上有一座大型纪念碑BC,某同学在斜坡底P处测得该碑的碑顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米到达坡顶A,在坡顶A处又测得该碑的碑顶B的仰角为76°,求纪念碑BC的高度(结果精确到0.1米).(过点A作AD⊥PO,垂足为点D.坡度=AD:PD)(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

 

查看答案

如图,直线yx+4x轴、y轴分别交于AB两点,把△AOB绕点A顺时针旋转90°后得到△AOB′,则点B′的坐标是_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.