如图,过点的抛物线的对称轴是,点是抛物线与轴的一个交点,点在轴上,点是抛物线的顶点.
(1)求、的值;
(2)当是直角三角形时,求的面积;
(3)设点在直线下方且在抛物线上,点、在抛物线的对称轴上(点在点的上方),且,过点作轴的平行线交直线于点,当最大时,请直接写出四边形的周长最小时点、、的坐标.
已知一个四位自然数M的千、百、十、个位上的数字分别是、、、,若,且,则称自然数M是“关联数”,且规定 .例如5326,因为,所以5326是“关联数”,且 现已知式子(、、都是整数,,,)的值表示四位自然数,且是“关联数”,的各位数字之和是8的倍数.
(1)当时,求;
(2)当时,求的和.
如图1,在中,,,将绕点旋转,边分别交边、于、两点.
(1)若,,求的最小值;
(2)如图2,设,点是的中点,连接,当旋转到与的交点是的中点时,过点作的垂线交CM于点,连接、,求证:.
某区为了创建国家级卫生城区,对辖区内一些农贸市场需要处理,处理的方式有两种,一种是不改变地理位置就地改造;另一种是改变地理位置,选择一个合理的位置重新建农贸市场.经调研,需要处理的农贸市场共有300万平方米,该区根据区情,限定就地改造的面积不得少于新建面积的2倍.
(1)新建农贸市场的面积最多是多少万平方米?
(2)该区计划以每平方米4000元的造价修建(1)中新建面积最多的农贸市场,以每平方米1000元的造价改造其它需要就地处理的农贸市场.但在实际施工中,新建的农贸市场面积增加了,每平方米的造价下降了,就地改造的农贸市场的面积没有变,但每平方米的造价下降了,结果总费用与计划持平,求的值.
某区某校为了加强对学生的安全教育工作,开展了安全知识竞赛,该校在初三年级中随机抽取了一部分同学的竞赛成绩,并把抽取的竞赛成绩分成优、良、中、差四个等级,同时绘制了如下两幅不完整的统计图,请根据统计图提供的信息解答以下问题:
(1)该校在初三年级中随机抽取了多少名同学的竞赛成绩?
(2)求扇形统计图中的值,并补全条形统计图;
(3)若从优等中选出两名同学在全年级进行交流,请用列表或树状图的方法求出所选两名学生恰好是一男一女的概率.
如图,一次函数的图像与轴交于点,与反比例函数的图像交于,且.
(1)求、、的值;
(2)直接写出时的取值范围.