已知am=2,an=4,求下列各式的值:(1)am+n;(2)a3m+2n
【答案】(1)23或8;(2)27或128.
【解析】
(1) =2×4=8;
(2) = =8×16=128.
【题型】解答题
【结束】
24
已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.
计算
【答案】10a6
【解析】
原式利用幂的乘方及同底数幂的乘法法则计算,合并即可得到结果.
=10a6.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
【题型】解答题
【结束】
23
已知am=2,an=4,求下列各式的值:(1)am+n;(2)a3m+2n
计算:(﹣2x2y3)2(xy)3
【答案】4x7y9
【解析】
先算乘方,再算乘法.
原式=4x4y6•x3y3,
=4x7y9.
【点睛】
本题考查了整式的混合运算的应用,主要考查了积的乘方.
【题型】解答题
【结束】
22
计算
化简:(x4)3+(x3)4﹣2x4•x8
【答案】0
【解析】
直接利用整式运算法-乘方的运算则计算得出答案.
解:原式=x12+x12-2x12=0
【点睛】
本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键.
【题型】解答题
【结束】
21
计算:(﹣2x2y3)2(xy)3
计算:(-2xy2)6+(-3x2y4)3;
【答案】37x6y12 ;
【解析】
根据积的乘方、合并同类项进行计算即可
(-2xy2)6+(-3x2y4)3,
=64x6y12-27x6y12,
=37x6y12.
【点睛】
本题考查了积的乘方、合并同类项等知识,熟练掌握公式及法则是解本题的关键.
【题型】解答题
【结束】
20
化简:(x4)3+(x3)4﹣2x4•x8
已知,,,那么、、之间满足的等量关系是__________.
【答案】a+b=c
【解析】
试题解析:∵
∴a+b=c,
故答案为:a+b=c.
【题型】填空题
【结束】
19
计算:(-2xy2)6+(-3x2y4)3;