已知:AD是△ABC的高,且BD=CD.
(1)如图1,求证:∠BAD=∠CAD;
(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;
(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.
已知x2+3x﹣1=0,求:x3+5x2+5x+18的值_______________.
如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).
(1)求灯杆CD的高度;
(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
学校调查了某班同学上学的方式有四种:骑自行车、步行、乘坐公交车和家长接送(分别用A、B、C、D表示),根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请集合图中所给信息解答下列问题:
(1)这个班级学生共有多少人?
(2)将两幅不完整的图补充完整;
(3)求扇形统计图中C所对圆心角的度数;
(4)已知步行上学的同学中有3名女同学,学校将从步行上学的同学中随机选出2名同学参加交通安全知识培训,求所选2名同学恰好是一男一女的概率.
化简下列各式:
(1);
(2).
已知:如图,点B、F、C、E在一条直线上,∠B=∠E,∠ACB=∠DFE,且BF=EC.求证:△ABC≌△DEF.