下列长度的三条线段能构成直角三角形的是( )
①8、15、17;②4、5、6;③7.5、4、8.5;④24、25、7;⑤5、8、10.
A. ①②④ B. ②④⑤ C. ①③⑤ D. ①③④
如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为( )
A. PN<3 B. PN>3 C. PN≥3 D. PN≤3
若等腰三角形的顶角为40°,则它的底角度数为( )
A. 40° B. 50° C. 60° D. 70°
如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表:
(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;
(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?
去学校食堂就餐,经常会在一个买菜窗口前等待,经调查发现,同学的舒适度指数y与等时间x(分)之间满足反比例函数关系,如下表:
等待时间x | 1 | 2 | 5 | 10 | 20 |
舒适度指数y | 100 | 50 | 20 | 10 | 5 |
已知学生等待时间不超过30分钟
(1)求y与x的函数关系式,并写出自变量x的取值范围.
(2)若等待时间8分钟时,求舒适度的值;
(3)舒适度指数不低于10时,同学才会感到舒适.请说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?
如图,在平面直角坐标系中,正比例函数与反比例函数的图象分别交于A、C两点,已知点B与点D关于坐标原点O成中心对称,且点B的坐标为其中.
四边形ABCD的是______填写四边形ABCD的形状
当点A的坐标为时,四边形ABCD是矩形,求m,n的值.
试探究:随着k与m的变化,四边形ABCD能不能成为菱形?若能,请直接写出k的值;若不能,请说明理由.