如图,▱ABCD的对角线AC、BD相交于点M,点M在以AB为直径的⊙O上,AD与⊙O相交于点E,连接ME.
(1)求证:ME=MD;
(2)当∠DAB=30°时,判断直线CD与⊙O的位置关系,并说明理由.
关于x的方程mx2﹣x﹣m+1=0,有以下三个结论:
①当m=0时,方程只有一个实数解;
②当m≠0时,方程有两个不相等的实数解;
③无论m取何值,方程都有一个整数根.
(1)请你判断,这三个结论中正确的有_____(填序号)
(2)证明(1)中你认为正确的结论.
转转盘和摸球是等可能概率下的经典模型.
(1)在一个不透明的口袋中,放入除颜色外其余都相同的4个小球,其中1个白球,3个黑球搅匀后,随机同时摸出2个球,求摸出两个都是黑球的概率(要求釆用树状图或列表法求解);
(2)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针2次都落在黑色区域的概率(要求采用树状图或列表法求解).
如图,在△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A逆时针旋转α度(30<α<150)得到△AB′C′,B、C两点的对应点分别为点B′、C′,连接BC′,BC与AC、AB′相交于点E、F.
(1)当α=70时,∠ABC′=_____°,∠ACB′=______°.
(2)求证:BC′∥CB′.
如图,在平面直角坐标系xOy中,直线y=x+1与双曲线y=的一个交点为P(m,2).
(1)求k的值;
(2)M(2,a),N(n,b)是双曲线上的两点,直接写出当a>b时,n的取值范围.
在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为16cm的等腰直角三角形.
(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);
(2)请求出所制作圆锥底面的半径长.