如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为多少?
如图,已知抛物线y=ax2+bx的顶点为C(1,﹣1),P是抛物线上位于第一象限内的一点,直线OP交该抛物线对称轴于点B,直线CP交x轴于点A.
(1)求该抛物线的表达式;
(2)如果点P的横坐标为m,试用m的代数式表示线段BC的长;
(3)如果△ABP的面积等于△ABC的面积,求点P坐标.
如图,在△AOB中,∠O=90°,AO=18cm,BO=30cm,动点M从点A开始沿边AO以1cm/s的速度向终点O移动,动点N从点O开始沿边OB以2cm/s的速度向终点B移动,一个点到达终点时,另一个点也停止运动.如果M、N两点分别从A、O两点同时出发,设运动时间为ts时四边形ABNM的面积为Scm2.
(1)求S关于t的函数关系式,并直接写出t的取值范围;
(2)判断S有最大值还是有最小值,用配方法求出这个值.
从图中的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:
①b>0 ②c=0;③函数的最小值为﹣3;④a﹣b+c>0;⑤当x1<x2<2时,y1>y2.
(1)你认为其中正确的有哪几个?(写出编号)
(2)根据正确的条件请求出函数解析式.
画出二次函数y=(x﹣1)2的图象.
如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是
.