满分5 > 初中数学试题 >

如图,已知三角形ABC的边AB是0的切线,切点为B. AC经过圆心0并与圆相交于...

如图,已知三角形ABC的边AB0的切线,切点为B. AC经过圆心0并与圆相交于点D,C,过C作直线CEAB,交AB的延长线于点E.

(1)求证:CB平分∠ACE;

(2)BE=3,CE=4,求O的半径.

 

(1)证明见解析;(2). 【解析】 试题(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果. (2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果. (1)证明:如图1,连接OB, ∵AB是⊙0的切线, ∴OB⊥AB, ∵CE丄AB, ∴OB∥CE, ∴∠1=∠3, ∵OB=OC, ∴∠1=∠2, ∴∠2=∠3, ∴CB平分∠ACE; (2)如图2,连接BD, ∵CE丄AB, ∴∠E=90°, ∴BC===5, ∵CD是⊙O的直径, ∴∠DBC=90°, ∴∠E=∠DBC, ∴△DBC∽△CBE, ∴, ∴BC2=CD•CE, ∴CD==, ∴OC==, ∴⊙O的半径=.
复制答案
考点分析:
相关试题推荐

如图,AB是半圆O的直径,C是AB延长线上一点,CD与半圆O相切于点D,连接AD,BD.

(1)求证:∠BAD=∠BDC;

(2)若sin∠BDC=,BC=2,求⊙O的半径.

 

查看答案

如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,AC平分∠DAB.

(1)求证:AD⊥CD;

(2)若AD=2,AC=,求⊙O的半径R的长.

 

查看答案

如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_____(写出所有正确结论的序号).

 

查看答案

如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56°,则α的度数是_____

 

查看答案

如图,等边三角形ABC内接于⊙O,D为上一点,连接BD交AC于点E,若∠ABD=45°,则∠AED=_____度.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.