满分5 > 初中数学试题 >

如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分...

如图,AB是O的直径,点C为O上一点,CN为O的切线,OMAB于点O,分别交AC、CN于D、M两点.

(1)求证:MD=MC;

(2)若O的半径为5,AC=4,求MC的长.

 

(1)证明见解析;(2)MC=. 【解析】(1)连接OC,利用切线的性质证明即可; (2)根据相似三角形的判定和性质以及勾股定理解答即可. (1)连接OC, ∵CN为⊙O的切线, ∴OC⊥CM,∠OCA+∠ACM=90°, ∵OM⊥AB, ∴∠OAC+∠ODA=90°, ∵OA=OC, ∴∠OAC=∠OCA, ∴∠ACM=∠ODA=∠CDM, ∴MD=MC; (2)由题意可知AB=5×2=10,AC=4, ∵AB是⊙O的直径, ∴∠ACB=90°, ∴BC==2, ∵∠AOD=∠ACB,∠A=∠A, ∴△AOD∽△ACB, ∴,即, 可得:OD=2.5, 设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52, 解得:x=, 即MC=.
复制答案
考点分析:
相关试题推荐

如图所示,在⊙O中,,弦CD与弦AB交于点F,连接BC,若∠ACD=60°,⊙O的半径长为2cm.

(1)求∠B的度数及圆心O到弦AC的距离;

(2)求图中阴影部分面积.

 

查看答案

已知:如图,⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P于D、E,过点E作EF⊥CE交CB的延长线于F.

(1)求证:BC是⊙P的切线;

(2)若CD=2,CB=2,求EF的长.

 

查看答案

如图,已知三角形ABC的边AB0的切线,切点为B. AC经过圆心0并与圆相交于点D,C,过C作直线CEAB,交AB的延长线于点E.

(1)求证:CB平分∠ACE;

(2)BE=3,CE=4,求O的半径.

 

查看答案

如图,AB是半圆O的直径,C是AB延长线上一点,CD与半圆O相切于点D,连接AD,BD.

(1)求证:∠BAD=∠BDC;

(2)若sin∠BDC=,BC=2,求⊙O的半径.

 

查看答案

如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,AC平分∠DAB.

(1)求证:AD⊥CD;

(2)若AD=2,AC=,求⊙O的半径R的长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.