满分5 > 初中数学试题 >

如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为...

如图,在平面直角坐标系中,∠ACB90°OC2BOAC6,点B的坐标为(10),抛物线y=﹣x2+bx+c经过AB两点.

1)求点A的坐标;

2)求抛物线的解析式;

3)点P是直线AB上方抛物线上的一点,过点PPD垂直x轴于点D,交线段AB于点E,使PEDE

①求点P的坐标;

②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.

 

(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,). 【解析】 (1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式; (2)①先得AB的解析式为:y=-2x+2,根据PD⊥x轴,设P(x,-x2-3x+4),则E(x,-2x+2),根据PE=DE,列方程可得P的坐标; ②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标. (1)∵B(1,0), ∴OB=1, ∵OC=2OB=2, ∴C(﹣2,0), Rt△ABC中,tan∠ABC=2, ∴=2, ∴=2, ∴AC=6, ∴A(﹣2,6), 把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:, 解得:, ∴抛物线的解析式为:y=﹣x2﹣3x+4; (2)①∵A(﹣2,6),B(1,0), 易得AB的解析式为:y=﹣2x+2, 设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2), ∵PE=DE, ∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2), x=1(舍)或﹣1, ∴P(﹣1,6); ②∵M在直线PD上,且P(﹣1,6), 设M(﹣1,y), ∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2, BM2=(1+1)2+y2=4+y2, AB2=(1+2)2+62=45, 分三种情况: i)当∠AMB=90°时,有AM2+BM2=AB2, ∴1+(y﹣6)2+4+y2=45, 解得:y=3, ∴M(﹣1,3+)或(﹣1,3﹣); ii)当∠ABM=90°时,有AB2+BM2=AM2, ∴45+4+y2=1+(y﹣6)2,y=﹣1, ∴M(﹣1,﹣1), iii)当∠BAM=90°时,有AM2+AB2=BM2, ∴1+(y﹣6)2+45=4+y2,y=, ∴M(﹣1,); 综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).
复制答案
考点分析:
相关试题推荐

分别用定长为a的线段围成矩形和圆.

1)求围成矩形的面积的最大值;(用含a的式子表示)

2)哪种图形的面积更大?为什么?

 

查看答案

某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.

(1)若想要这种童装销售利润每天达到 1200 元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?

(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?

 

查看答案

在平面直角坐标系xOy中,直线ykx+bk0)与抛物线yax24ax+3a的对称轴交于点Am,﹣1),点A关于x轴的对称点恰为抛物线的顶点.

1)求抛物线的对称轴及a的值;

2)横、纵坐标都是整数的点叫做整点.记直线ykx+bk0)与抛物线围成的封闭区域(不含边界)为W

k1时,直接写出区域W内的整点个数;

若区域W内恰有3个整点,结合函数图象,求b的取值范围.

 

查看答案

已知:抛物线ymx2+m2x2m+2m0).

1)求证:抛物线与x轴有交点;

2)若抛物线与x轴交于点Ax10),Bx20),点A在点B的右侧,且x1+2x21

m的值;

P在抛物线上,点Gn,﹣n),求PG的最小值.

 

查看答案

某学校有一块长方形活动场地,长为2x米,宽比长少5米.实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加了4米.

1)求扩大后学生的活动场地的面积.(用含x的代数式表示)

2)若x20,求活动场地扩大后增加的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.