﹣3的相反数是( )
A. ﹣3 B. 3 C. - D.
如图是某同学对一道作业题的解题思路,课堂上师生据此展开了讨论.问题如图,已知A(1,)、B(4,0),∠OAB的平分线AC交x轴于点C,求OC的长.思路:作AD⊥OB,CE⊥AB,CF⊥OA
①A坐标→OD=1,AD=,OA=2→∠AOC=60°;
②A、B坐标→OA=2,OB=4,AB=2→∠OAB=90°;
③AC平分∠OAB→CE=CF;
④S△AOC+S△ABC=S△AOB→AO•CF+AB•CE=OA•AB→CF=3﹣;
⑤综上,Rt△OCF中,OC=﹣2.可以优化吗?
(1)同学们发现不需要证“∠OAB=90°”也能求解,简要说明理由.几位同学提出了不同的思路
①甲说:S△AOC和S△ABC的面积之比既是,又是,从而;
②乙说:在AB边上取点G,使AG=AO,连接CG,可知BG的长即为所求;
③丙说:延长AC交△AOB的外接圆于N,再利用一次函数或相似求出OC.
请你选择其中一种解法,利用图2和已有步骤完成解答.有什么收获?
(2)面积法是图形问题中确定数量关系的有效方法,请利用面积法求【解析】
如图1,⊙O与△ABC的边AC,边BA、BC的延长线AE、CF相切,切点分别为D、E、F.设△ABC的面积为S,BC=a,AC=b,AB=c,请用含S、a、b、c的式子表示⊙O的半径R,直接写出结果.
如图,AB为⊙O直径,C、D为⊙O上的点,∠ACD=2∠A,CE⊥DB交DB的延长线于点E.
(1)求证:直线CE与⊙O相切;
(2)若AC=8,AB=10,求CE的长.
△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.
(1)求证:;
(2)设EF=x,EH=y,写出y与x之间的函数表达式;
(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.
如图,为测量某建筑物EF的高度,小明在楼AB上选择观测点A、C,从A测得建筑物的顶部E的仰角为37°,从C测得建筑物的顶部E的仰角为45°,A处高度为20m,C处高度为10m.求建筑物EF的高度(精确到1m).
(参考数据:sin37°≈0.6,cos37°≈0.8,tan37≈0.75,≈1.4)
已知二次函数y=a(x﹣2)2﹣1的图象经过点(0,3).
(1)求这个二次函数的表达式;
(2)直接写出y>0时x的取值范围;
(3)该函数的图象通过左右平移可以经过原点,写出所有的平移方案.