满分5 > 初中数学试题 >

如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平...

如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

 

(1)抛物线的解析式为y=x2+4x+2;(2)P的坐标为(﹣6,0)或(﹣13,0). 【解析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式; (2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标. (1)由题意得:x=﹣=﹣=﹣2,c=2, 解得:b=4,c=2, 则此抛物线的解析式为y=x2+4x+2; (2)∵抛物线对称轴为直线x=﹣2,BC=6, ∴B横坐标为﹣5,C横坐标为1, 把x=1代入抛物线解析式得:y=7, ∴B(﹣5,7),C(1,7), 设直线AB解析式为y=kx+2, 把B坐标代入得:k=﹣1,即y=﹣x+2, 作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M, 可得△AQH∽△ABM, ∴, ∵点P在x轴上,直线CP将△ABC面积分成2:3两部分, ∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5, ∵BM=5, ∴QH=2或QH=3, 当QH=2时,把x=﹣2代入直线AB解析式得:y=4, 此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0); 当QH=3时,把x=﹣3代入直线AB解析式得:y=5, 此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0), 综上,P的坐标为(﹣6,0)或(﹣13,0).
复制答案
考点分析:
相关试题推荐

求函数的最值.

 

查看答案

如图,已知抛物线轴交于点和点,与轴交于点,连接交抛物线的对称轴于点是抛物线的顶点.

求此抛物线的解析式;

直接写出点和点的坐标;

若点在第一象限内的抛物线上,且,求点坐标.

 

查看答案

画函数y的图象.

 

查看答案

已知,二次函数的部分对应值如下表,则________

 

 

 

查看答案

如图,用长为10米的篱笆,一面靠墙(墙的长度超过10),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x的函数解析式是______(不写定义域)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.