满分5 > 初中数学试题 >

某企业信息部进行市场调研发现: 信息一:如果单独投资A种产品,所获利润yA(万元...

某企业信息部进行市场调研发现:

信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:

x(万元)

1

2

2.5

3

5

yA(万元)

0.4

0.8

1

1.2

2

 

信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yBax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.

(1)求出yBx的函数关系式;

(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yAx之间的关系,并求出yAx的函数关系式;

(3)如果企业同时对AB两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?

 

(1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元 【解析】 【解析】 (1)yB=-0.2x2+1.6x,………………………3分 (2)一次函数,yA=0.4x,……………………………6分 (3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8, ……8分 ∴当x=3时,W最大值=7.8,…………………………………10分 答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元. (1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可; (2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式; (3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值  
复制答案
考点分析:
相关试题推荐

已知二次函数yx2+4x+3

(1)用配方法将yx2+4x+3化成ya(xh)2+k的形式;

(2)在平面直角坐标系xOy中,画出这个二次函数的图象.

 

查看答案

已知抛物线yax2+bx+3A(30)B(10)两点,交y轴于点C

(1)求该抛物线的表达式.

(2)P是该抛物线上的动点,当△PAB的面积等于△ABC的面积时,求P点的坐标.

 

查看答案

已知直线l:y=kx+1与抛物线y=x2-4x

(1)求证:直线l与该抛物线总有两个交点;

(2)设直线l与该抛物线两交点为A,B,O为原点,当k=-2时,求△OAB的面积.

 

查看答案

如图,用长为10米的篱笆,一面靠墙(墙的长度超过10),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x的函数解析式是______(不写定义域)

 

查看答案

如图是二次函数和一次函数y2kx+t的图象,当y1≥y2时,x的取值范围是_______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.