满分5 > 初中数学试题 >

如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y...

如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点By轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;   

(2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在.请求出点P的坐标;   

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积.

 

(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处. 【解析】 试题(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式; (2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标; (3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处. 试题解析:【解析】 (1)把A(1,0)和C(0,3)代入y=x2+bx+c, 解得:b=﹣4,c=3, ∴二次函数的表达式为:y=x2﹣4x+3; (2)令y=0,则x2﹣4x+3=0, 解得:x=1或x=3, ∴B(3,0), ∴BC=3, 点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1, ①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3 ∴P1(0,3+3),P2(0,3﹣3); ②当PB=PC时,OP=OB=3, ∴P3(﹣3,0); ③当BP=BC时, ∵OC=OB=3 ∴此时P与O重合, ∴P4(0,0); 综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0); (3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t, ∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1, 当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
复制答案
考点分析:
相关试题推荐

某企业信息部进行市场调研发现:

信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:

x(万元)

1

2

2.5

3

5

yA(万元)

0.4

0.8

1

1.2

2

 

信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yBax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.

(1)求出yBx的函数关系式;

(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yAx之间的关系,并求出yAx的函数关系式;

(3)如果企业同时对AB两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?

 

查看答案

已知二次函数yx2+4x+3

(1)用配方法将yx2+4x+3化成ya(xh)2+k的形式;

(2)在平面直角坐标系xOy中,画出这个二次函数的图象.

 

查看答案

已知抛物线yax2+bx+3A(30)B(10)两点,交y轴于点C

(1)求该抛物线的表达式.

(2)P是该抛物线上的动点,当△PAB的面积等于△ABC的面积时,求P点的坐标.

 

查看答案

已知直线l:y=kx+1与抛物线y=x2-4x

(1)求证:直线l与该抛物线总有两个交点;

(2)设直线l与该抛物线两交点为A,B,O为原点,当k=-2时,求△OAB的面积.

 

查看答案

如图,用长为10米的篱笆,一面靠墙(墙的长度超过10),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x的函数解析式是______(不写定义域)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.