“五一”节,小雯和同学一起到游乐场玩大型摩天轮,摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m).
(1)经过2min后小雯到达点Q,如图所示,此时他离地面的高度是多少?
(2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m的空中?
如图,在平行四边形ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA.
(1)判断△APB是什么三角形,证明你的结论;
(2)比较DP与PC的大小;
(3)画出以AB为直径的⊙O,交AD于点E,连接BE与AP交于点F,若tan∠BPC=,求tan∠AFE的值.
如图,AB是⊙O的直径,点C是BA延长线上一点,CD切⊙O于D点,弦DE∥CB,Q是AB上一动点,CA=1,CD是⊙O半径的倍.
(1)求⊙O的半径R;
(2)当Q从A向B运动的过程中,图中阴影部分的面积是否发生变化?若发生变化,请你说明理由;若不发生变化,请你求出阴影部分的面积.
如图,已知边长为2的正三角形ABC沿着直线l滚动.
(1)当△ABC滚动一周到△A1B1C1的位置,此时A点运动的路程为 ;约为 ;(精确到0.1,π=3.14…)
(2)设△ABC滚动240°时,C点的位置为C′,△ABC滚动480°时,A点的位置为A′.请你利用三角函数中正切的两角和公式tan(α+β)=(tanα+tanβ)÷(1﹣tanα•tanβ),求出∠CAC′+∠CAA′的度数.
如图,⊙O的半径是6,求⊙O的内接正六边形ABCDEF的一边AB所对弧的长.
已知:如图,圆内接四边形ABCD的一组对边AB、DC的延长线相交于点E,且∠DBA=∠EBC.求证:AD•BE=EC•BD.