已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求证:无论m取何值时,方程恒有实数根;
(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.
已知抛物线p:y=+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=+2x+1和y=2x+2,则这条抛物线的解析式为_____________.
利用图象法求方程的解,体现了数形结合的方法,它是将方程的解看成两个函数图象交点的横坐标.若关于x的方程x2+a﹣=0(a>0)只有一个整数解,则a的值等于__________________.
如图,抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,则一元二次方程ax2+bx+c=0的解是____________.
已知抛物线y=x2﹣(k+1)x+4的顶点在x轴上,则k的值是______.
已知二次函数y=kx2﹣5x﹣5的图象与x轴有交点,则k的取值范围是( )
A. k>- B. k-且k≠0 C. k- D. k>-且k≠0