小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:
①玩家只能将小兔从A、B两个出入口放入;
②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.
(1)问小美得到小兔玩具的机会有多大?
(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?
在一次数学课外活动中,一位同学在教学楼的点处观察旗杆,测得旗杆顶部的仰角为,测得旗杆底部的俯角为,已知点距地面的高为.求旗杆的高度.
已知抛物线y=﹣2x2+4x+c.
(1)若抛物线与x轴有两个交点,求c的取值范围;
(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.
如图所示,的直径,点是延长线上的一点,过点作的切线,切点为,连接.
(1)若,求的长;
(2)若点在的延长线上运动,的平分线交于点,你认为的大小是否发生变化?若变化,请说明理由;若不变化,求出的大小.
如图,点,将绕点旋转得到.
(1)请在图中画出,并写出点的坐标;
(2)求旋转过程中点的轨迹长.
计算:sin30°•tan60°+..