如图,在中,,,为的中点.的半径为3,动点从点出发沿方向以每秒1个单位的速度向点运动,设运动时间为秒.
(1)当以为半径的与相切时,求的值;
(2)探究:在线段上是否存在点,使得与直线相切,且与相外切?若存在,求出此时的值及相应的的半径;若不存在,请说明理由.
如图,已知和是位似图形,,垂直平分,且.
(1)求的度数;
(2)求的长度.
如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.
(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是 (填方案一,方案二,或方案三),则B点坐标是 ,求出你所选方案中的抛物线的表达式;
(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.
如图,已知是的直径,点在上,过点的直线与的延长线交于点,,.
(1)求证:是的切线;
(2)求证:;
(3)点是弧AB的中点,交于点,若,求的值.
小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:
①玩家只能将小兔从A、B两个出入口放入;
②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.
(1)问小美得到小兔玩具的机会有多大?
(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?
在一次数学课外活动中,一位同学在教学楼的点处观察旗杆,测得旗杆顶部的仰角为,测得旗杆底部的俯角为,已知点距地面的高为.求旗杆的高度.