如图,在中,,在、上分别找点、,使,将绕点顺时针方向旋转,的中点恰好落在的中点,延长交于,连接.
(1)四边形是什么特殊四边形?说明理由.
(2)是否存在中,使得图中四边形为菱形?若不存在,说明理由;若存在,求出此时的面积与面积的倍数关系.
如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.
(1)填空:点的坐标为_________,抛物线的解析式为_________;
(2)当点在线段上运动时(不与点,重合),
①当为何值时,线段最大值,并求出的最大值;
②求出使为直角三角形时的值;
(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.
如图,已知经过原点,并与两坐标轴交于、两点,点在上,,点的坐标为.
求:(1)点的坐标;
(2)圆心的坐标;
(3)的面积.
如图,在中,,,为的中点.的半径为3,动点从点出发沿方向以每秒1个单位的速度向点运动,设运动时间为秒.
(1)当以为半径的与相切时,求的值;
(2)探究:在线段上是否存在点,使得与直线相切,且与相外切?若存在,求出此时的值及相应的的半径;若不存在,请说明理由.
如图,已知和是位似图形,,垂直平分,且.
(1)求的度数;
(2)求的长度.
如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.
(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是 (填方案一,方案二,或方案三),则B点坐标是 ,求出你所选方案中的抛物线的表达式;
(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.