下列说法中正确的有( )个.
① 负数没有平方根,但负数有立方根.②的平方根是,的立方根是。
③如果 ,那么x=-2. ④算术平方根等于立方根的数只有1.
A. 1 B. 2 C. 3 D. 4
-8的立方根是( )
A. 2 B. C. D.
下列结论正确的是( )
A. 的立方根是 B. 没有立方根
C. 有理数一定有立方根 D. 的立方根是-1
如图,平面直角坐标系中,一次函数(为常数,)的图像与轴、轴分别相交于点,半径为4的⊙与轴正半轴相交于点,与轴相交于点,点在点上方.
(1)若直线与弧有两个交点.
①求的度数;
②用含的代数式表示,并直接写出的取值范围;
(2)设,在线段上是否存在点,使?若存在,请求出点坐标;若不存在,请说明理由.
如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.
(1)求抛物线的解析式及顶点坐标;
(2)在轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
如图2,与是两个全等的等腰三角形,,分别与相交于点,.
(1)图中有哪几对不全等的相似三角形,请把他们表示出来;
(2)根据图1两位同学对图形的探索,试探索之间的关系,并证明.