一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )
A. 4 B. 5 C. 6 D. 6
将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )
A. y=(x﹣8)2+5 B. y=(x﹣4)2+5 C. y=(x﹣8)2+3 D. y=(x﹣4)2+3
下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
顺次连接平面直角坐标系xOy中,任意的三个点P,Q,G.如果∠PQG=90°,那么称∠PQG为“黄金角”.
已知:点A(0,3),B(2,3),C(3,4),D(4,3).
(1)在A,B,C,D四个点中能够围成“黄金角”的点是 ;
(2)当时,直线y=kx+3(k≠0)与以OP为直径的圆交于点Q(点Q与点O,P不重合),当∠OQP是“黄金角”时,求k的取值范围;
(3)当P(t,0)时,以OP为直径的圆与△BCD的任一边交于点Q,当∠OQP是“黄金角”时,求t的取值范围.
如图,正方形ABCD,将边CD绕点C顺时针旋转60°,得到线段CE,连接DE,AE,BD交于点F.
(1)求∠AFB的度数;
(2)求证:BF=EF;
(3)连接CF,直接用等式表示线段AB,CF,EF的数量关系.
在平面直角坐标系xOy中,抛物线y=ax2+bx+3(a≠0)经过(1,0),且与y轴交于点C.
(1)直接写出点C的坐标 ;
(2)求a,b的数量关系;
(3)点D(t,3)是抛物线y=ax2+bx+3上一点(点D不与点C重合).
①当t=3时,求抛物线的表达式;
②当3<CD<4时,求a的取值范围.