满分5 > 初中数学试题 >

如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣...

如图所示,已知抛物线yax2a0)与一次函数ykx+b的图象相交于A(﹣1,﹣1),B2,﹣4)两点,点P是抛物线上不与AB重合的一个动点,点Qy轴上的一个动点.

1)请直接写出akb的值及关于x的不等式ax2kx2的解集;

2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;

3)是否存在以PQAB为顶点的四边形是平行四边形?若存在,请直接写出PQ的坐标;若不存在,请说明理由.

 

(1)a=﹣1,k=﹣1,b=﹣2,x<﹣1或x>2;(2)△PAB面积的最大值为,此时点P的坐标为(,);(3)P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4). 【解析】 (1)利用待定系数法即可求得a,k,b的值,根据图象即可得出不等式的解集;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),由此可得PD=m+1,PE=﹣m2+4.再根据S△APB=S△APC+S△BPC﹣S△ABC,代入数据即可得S△APB与m的二次函数关系式,利用二次函数求最值的方法求得m的值及S△APB 的值最大.再求得点P的坐标即可;(3)(3)根据平行四边形的性质和坐标特点解答即可. 【解析】 (1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1, 把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:, 解得:, 所以a=﹣1,k=﹣1,b=﹣2, 关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2, (2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C. ∵A(﹣1,﹣1),B(2,﹣4), ∴C(﹣1,﹣4),AC=BC=3, 设点P的横坐标为m,则点P的纵坐标为﹣m2. 过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4), ∴PD=m+1,PE=﹣m2+4. ∴S△APB=S△APC+S△BPC﹣S△ABC = = =. ∵<0,,﹣1<m<2, ∴当时,S△APB 的值最大. ∴当时,,S△APB=, 即△PAB面积的最大值为,此时点P的坐标为(,) (3)存在三组符合条件的点, 当以P,Q,A,B为顶点的四边形是平行四边形时, ∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4), 可得坐标如下: ①P′的横坐标为﹣3,代入二次函数表达式, 解得:P'(﹣3,﹣9),Q'(0,﹣12); ②P″的横坐标为3,代入二次函数表达式, 解得:P″(3,﹣9),Q″(0,﹣6); ③P的横坐标为1,代入二次函数表达式, 解得:P(1,﹣1),Q(0,﹣4). 故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1), Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).
复制答案
考点分析:
相关试题推荐

已知ABO的直径,APO的切线,A是切点,BPO交于点C

1)如图,若∠P35°,连OC,求∠BOC的度数;

2)如图,若DAP的中点,求证:直线CDO的切线.

 

查看答案

某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.

1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;

2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?

3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?

 

查看答案

如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=4,点DAB的中点,连接DO并延长交⊙O于点P.

(1)求劣弧PC的长结果保留π);

(2)过点PPFAC于点F,求阴影部分的面积结果保留π).

 

查看答案

某中学在参加创文明城书画比赛中,杨老师从全校30个班中随机抽取了4个班(   ABCD表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:

(l)杨老师采用的调查方式是    (普查抽样调查”)

(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数 

(3)请估计全校共征集作品的件数.

(4)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.

 

查看答案

某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.

(1)第一季度平均每月的增长率;

(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.