满分5 > 初中数学试题 >

如图,在菱形ABCD中,AC、BD交于点O,AD=15,AO=12.动点P以每秒...

如图,在菱形ABCD中,AC、BD交于点O,AD=15,AO=12.动点P以每秒2个单位的速度从点A出发,沿AC向点C匀速运动.同时,动点Q以每秒1个单位的速度从点D出发,沿DB向点B匀速运动.当其中有一点列达终点时,另一点也停止运动,设运动的时间为t秒.

(1)求线段DO的长;

(2)设运动过程中△POQ两直角边的和为y,请求出y关于x的函数解析式;

(3)请直接写出点P在线段OC上,点Q在线段DO上运动时,△POQ面积的最大值,并写出此时的t值.

 

(1)9(2)见解析(3)当t=时,△POQ面积的最大值 【解析】 (1)根据菱形的对角线互相垂直平分的性质得到直角△AOD,在该直角三角形中利用勾股定理来求线段DO的长度; (2)需要分类讨论:点P在线段OA上、点Q在线段OD上;点P在线段OC上,点Q在线段OD上;点P在线段OC上,点Q在线段OB上; (3)由6<t≤9时OP=12﹣2t、OQ=9﹣t可得△POQ的面积S=(9﹣t)(12﹣2t)=﹣t2+15t﹣54=﹣(t﹣)2+,利用二次函数的性质求解可得. (1)∵四边形ABCD是菱形, ∴AC⊥BD. 在Rt△AOD中,AD=15,AO=12 由勾股定理得: OD==9. (2)①当0≤t≤6时,OP=12﹣2t,OQ=9﹣t,则OP+OQ=12﹣2t+9﹣t=﹣3t+21 即:y=﹣3t+21; ②当6<t≤9时,OP=2t﹣12,OQ=9﹣t,则OP+OQ=2t﹣12+9﹣t=t﹣3 即:y=t﹣3; ③当9<t≤12时,OP=2t﹣12,OQ=t﹣9,则OP+OQ=2t﹣12+t﹣9=3t﹣21 即:y=3t﹣21; 综上所述:y=; (3)如图, 当6<t≤9时,∵OP=12﹣2t、OQ=9﹣t, ∴△POQ的面积S=(9﹣t)(12﹣2t) =﹣t2+15t﹣54 =﹣(t﹣)2+, ∴当t=时,△POQ面积的最大值.
复制答案
考点分析:
相关试题推荐

如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.

(Ⅰ)求证:EF为⊙O的切线;

(Ⅱ)若AB=2,∠BDC=2∠A,求的长.

 

查看答案

如图,在平面直角坐标系xOy中,函数yx>0)的图象经过点A,作ACx轴于点C

(1)求k的值;

(2)直线yax+ba≠0)图象经过点Ax轴于点B,且OB=2AC.求a的值.

 

查看答案

一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.

(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;

(Ⅱ)求两次取出的小球标号相同的概率;

(Ⅲ)求两次取出的小球标号的和大于6的概率.

 

查看答案

截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.

(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.

解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.

根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)

(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.

 

查看答案

某镇为打造“绿色小镇”,投入资金进行河道治污.已知2016年投入资金1000万元,2018年投入资金1210万元.

(1)求该镇投入资金从2016年至2018年的年平均增长率;

(2)若2019年投入资金保持前两年的年平均增长率不变,求该镇2019年预计投入资金多少万元?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.