满分5 > 初中数学试题 >

已知二次函数,与的部分对应值如下表所示: … -1 0 1 2 3 4 … … ...

已知二次函数的部分对应值如下表所示:

-1

0

1

2

3

4

6

1

-2

-3

-2

m

 

 

 

 

下面有四个论断:

①抛物线的顶点为

③关于的方程的解为

其中,正确的有___________________

 

①③. 【解析】 根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知: 该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1; ①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确; ②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0; ③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确; ④m=﹣3,结论错误, 其中,正确的有. ①③ 故答案为:①③
复制答案
考点分析:
相关试题推荐

抛物线y=n(n+1)x2﹣(3n+1)x+3与直线y=﹣nx+2的两个交点的横坐标分别是x1、x2,记dn=|x1﹣x2|,则代数式d1+d2+d3+…+d2018的值为__

 

查看答案

抛物线的部分图象如图所示,则当y0时,x的取值范围是_____

 

查看答案

若抛物线C1yx2+mx+2与抛物线C2yx23x+n关于y轴对称,则m+n_____

 

查看答案

将抛物线向右平移3个单位,再向上平移3个单位,所得的抛物线的解析式为________________

 

查看答案

已知抛物线yax2+bx+ca≠0)与x轴交于点A(﹣1,0),对称轴为x=1,与y轴的交点B(0,2)和(0,3)之间(包含这两个点)运动.有如下四个结论:抛物线与x轴的另一个交点是(3,0);②Cx1y1),Dx2y2)在抛物线上,且满足x1x2<1,则y1y2;③常数项c的取值范围是2≤c≤3;④系数a的取值范围是﹣1≤a≤﹣.上述结论中,所有正确结论的序号是(  )

A. ①②③    B. ②③④    C. ①④    D. ①③④

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.