已知二次函数y=x2﹣4x+3.
(1)求该二次函数与x轴的交点坐标和顶点;
(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.
如图,抛物线与直线相交于点,,则关于的方程的解为_______________ .
已知二次函数,与的部分对应值如下表所示:
… | -1 | 0 | 1 | 2 | 3 | 4 | … | |
… | 6 | 1 | -2 | -3 | -2 | m | … |
下面有四个论断:
①抛物线的顶点为;
②;
③关于的方程的解为;
④.
其中,正确的有___________________.
抛物线y=n(n+1)x2﹣(3n+1)x+3与直线y=﹣nx+2的两个交点的横坐标分别是x1、x2,记dn=|x1﹣x2|,则代数式d1+d2+d3+…+d2018的值为__.
抛物线的部分图象如图所示,则当y>0时,x的取值范围是_____.
若抛物线C1:y=x2+mx+2与抛物线C2:y=x2﹣3x+n关于y轴对称,则m+n=_____.