方程的解是( )
A. 0 B. 3 C. 0或–3 D. 0或3
如图,正方形网格MNPQ中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ的4条边的小方格顶点上.
(1)设正方形MNPQ网格内的每个小方格的边长为1,求:
①△ABQ,△BCM,△CDN,△ADP的面积;
②正方形ABCD的面积.
(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?
[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
[定理表述]请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述).
[尝试证明]以图(1)中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图(2)),请你利用图(2)验证勾股定理.
[知识拓展]利用图(2)中的直角梯形,我们可以证明.其证明步骤如下:
∵BC=a+b,AD=________,
又∵在直角梯形ABCD中,有BC________AD(填大小关系),即________,
∴.
如图所示,在正方形ABCD中,M为AB的中点,N为AD上的一点,且AN=AD,试猜测△CMN是什么三角形,请证明你的结论.
“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30 m处,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?
如图所示,隔湖有A,B两点,从与BA方向成直角的BC方向上取一个点C,测得CA=50 m,CB=40 m,试求A,B两点间的距离.