如图,已知NG平分∠BNF,∠AMD=∠MNF,∠CMN:∠DMN=3:5,试求∠MNF和∠GNF的度数.
将一副直角三角尺(即直角三角形AOB和直角三角形COD)的直角顶点O的重合,其中,在△AOB中,∠A=60°,∠B=30°,∠AOB=90°;在△COD中,∠C=∠D=45°,∠COD=90°.
(1)如图1,当OA在∠COD的外部,且∠AOC=45°时,①试说明CO平分∠AOB; ②试说明OA∥CD(要求书写过程);
(2)如图2,绕点O旋转直角三角尺AOB,使OA在∠COD的内部,且CD∥OB,试探索∠AOC=45°是否成立,并说明理由.
如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.
如图,已知CE⊥AB,MN⊥AB,∠1=∠2,求证:∠EDC+∠ACB=180°.
如图,四边形ABCD中,点E在BC上,∠A+∠ADE=180°,∠B=78°,∠C=60°,求∠EDC的度数.
如图,EF∥AD,∠1=∠2,∠BAC="70"o,求∠AGD。
【解析】
∵EF∥AD,
∴∠2=∠3( )
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG ( )
∴∠BAC+ ="180"o( )
∵∠BAC=70 o,∴∠AGD= 。