满分5 > 初中数学试题 >

如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以...

如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.

(1)试判断直线BC与⊙O的位置关系,并说明理由;

(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).

 

(1)证明见解析;(2) 【解析】试题(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线; (2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积. 试题解析:【解析】 (1)BC与⊙O相切.理由如下: 连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切; (2)设OF=OD=x,则OB=OF+BF=x+2.根据勾股定理得: ,即,解得:x=2,即OD=OF=2,∴OB=2+2=4.Rt△ODB中,∵OD=OB,∴∠B=30°,∴∠DOB=60°,∴S扇形DOF==,则阴影部分的面积为S△ODB﹣S扇形DOF==.故阴影部分的面积为.  
复制答案
考点分析:
相关试题推荐

(2017·山东德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心.

(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式;

(2)求出水柱的最大高度是多少?

 

查看答案

王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cmBC=18cm,∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8cos50°≈0.6tan50°≈1.2

 

查看答案

如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为DAB=BC=2,则∠AOB=______°

 

查看答案

如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:0a2;﹣1b0;c=﹣1;|a|=|b|时x2﹣1;以上结论中正确结论的序号为 

 

查看答案

抛物线y=x223的顶点坐标是____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.