满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点...

如图,在平面直角坐标系中,直线l1y=﹣x与反比例函数y的图象交于AB两点(点A在点B左侧),已知A点的纵坐标是2

1)求反比例函数的表达式;

2)根据图象直接写出﹣x的解集;

3)将直线l1y=- x沿y向上平移后的直线l2与反比例函数y在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.

 

(1) y=﹣;(2) x<﹣4 或 0<x<4;(3) y=-. 【解析】 (1)直线l1:y= - x经过点A,且A点的纵坐标是2,可得A(-4,2),代入反比例函数解析式可得k的值;(2)根据图象得到点B的坐标,进而直接得到﹣ x> 的解集即可;(3)设平移后的直线 与 x 轴交于点 D,连接 AD,BD,由平行线的性质可得出S△ABC=S△ABF,即可得出关于OD的一元一次方程,解方程即可得出结论. (1)∵直线 l1:y=﹣x 经过点 A,A 点的纵坐标是 2, ∴当 y=2 时,x=﹣4, ∴A(﹣4,2), ∵反比例函数 y=的图象经过点 A, ∴k=﹣4×2=﹣8, ∴反比例函数的表达式为 y=﹣; (2)∵直线 l1:y=﹣x 与反比例函数 y=的图象交于 A,B 两点, ∴B(4,﹣2), ∴不等式﹣ x> 的解集为 x<﹣4 或 0<x<4; (3)如图,设平移后的直线 与 x 轴交于点 D,连接 AD,BD, ∵CD∥AB, ∴△ABC 的面积与△ABD 的面积相等, ∵△ABC 的面积为 30, ∴S△AOD+S△BOD=30,即 OD(|yA|+|yB|)=30, ∴×OD×4=30, ∴OD=15, ∴D(15,0), 设平移后的直线 的函数表达式为 y=﹣x+b, 把 D(15,0)代入,可得 0=﹣×15+b, 解得 b=, ∴平移后的直线 的函数表达式为 y=-.
复制答案
考点分析:
相关试题推荐

如图,在平面直角坐标系xOy中,点O为正方形ABCD对角线的交点,且正方形ABCD的边均与某条坐标轴平行或垂直,AB4

(1)如果反比例函数y的图象经过点A,求这个反比例函数的表达式;

(2)如果反比例函数y的图象与正方形ABCD有公共点,请直接写出k的取值范围.

 

查看答案

如图,在四边形ABCD中,CDABADBC.已知A(20)B(60)D(03),函数y(x0)的图象G经过点C

(1)求点C的坐标和函数y(x0)的表达式;

(2)将四边形ABCD向上平移2个单位得到四边形A'B'C'D',问点B'是否落在图象G上?

 

查看答案

平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1(x0)的图象上.点Aʹ与点A关于点O对称,一次函数y2mx+n的图象经过点Aʹ.

(1)a2,点B(42)在函数y1y2的图象上.

分别求函数y1y2的表达式;

直接写出使y1y20成立的x的范围.

(2)如图,设函数y1y2的图象相交于点B,点B的横坐标为3a,△AAB的面积为16,求k的值.

 

查看答案

有这样一个问题:探究函数y的图象与性质.小彤根据学习函数的经验,对函数y的图象与性质进行了探究.

下面是小彤探究的过程,请补充完整:

(1)函数y的自变量x的取值范围是     

(2)下表是yx的几组对应值:

x

2

1

0

1

2

4

5

6

7

8

y

m

0

1

3

2

 

m的值为     

(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;

(4)观察图象,写出该函数的一条性质     

(5)若函数y的图象上有三个点A(x1y1)B(x2y2)C(x3y3),且x13x2x3,则y1y2y3之间的大小关系为     

 

查看答案

如图,一次函数yx+4的图象与反比例函数y(k为常数且k0)的图象交于A(1a)B两点,与x轴交于点C

(1)ak的值及点B的坐标;

(2)若点Px轴上,且SACPSBOC,直接写出点P的坐标.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.