下表中有两种移动电话计费方式:
| 月使用费(元) | 主叫限定时间(分钟) | 主叫超时费(元/分钟) | 被叫 |
方式一 | 65 | 160 | 0.25 | 免费 |
方式二 | 100 | 380 | 0.19 | 免费 |
说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费;被叫免费.
(1)若李杰某月主叫通话时间为200分钟则他按方式一计费需 元,按方式二计费需 元;若他按方式二计费需103.8元,则主叫通话时间为 分钟;
(2)是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等,若存在,请求出t的值;若不存在,请说明理由;
(3)请你通过计算分析后,直接给出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间t(分钟)满足什么条件时,选择方式二省钱.
(1)将一张长方形纸片按如图1所示的方式折叠,BC、BD为折痕,求∠CBD的度数;
(2)将一张长方形纸片按如图2所示的方式折叠,BC、BD为折痕,若∠A′BE′=50°,求∠CBD的度数;
(3)将一张长方形纸片按如图3所示的方式折叠,BC、BD为折痕,若∠A′BE′=α,请直接写出∠CBD的度数(用含α的式子表示)
列方程解应用题:
整理一批图书,由一个人做要30h完成.现计划由一部分人先做1h,然后增加6人与他们一起做2h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?
如图,已知两点A、B.
(1)画出符合要求的图形
①画线段AB;
②延长线段AB到点C,使BC=AB;
③反向延长线段AB到点D,使DA=2AB;
④分别取BC、AD的中点M、N.
(2)在(1)的基础上,已知线段AB的长度是4cm,求线段MN的长度.
解方程:
(1)3x﹣3=x+5; (2).
先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣4y2+2x3),其中x=﹣3,y=﹣2.