在这四个数中,最小的数是( )
A. B. C. D.
﹣2的倒数是( )
A. 2 B. C. D. ﹣2
(定义)数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.
(理解)如图①,在△ABC中,∠A=36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.
如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.
(应用)
(1)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值______;
(2)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在BC边上,点E在AB边上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.
画图计算:
(1)已知△ABC,请用尺规在图1中△ABC内确定一个点P,使得点P到AB和BC的距离相等,且满足P到点B和点C的距离相等(不写作法,保留作图痕迹).
(2)如图2,如果点P是(1)中求作的点,点E、F分别在边AB、BC上,且PE=PF.
①若∠ABC=60°,求∠EPF的度数;
②若BE=2,BF=8,EP=5,求BP的长.
(3)如图3,如果点P是△ABC内一点,且点P到点B的距离是7,若∠ABC=45°,请分别在AB、BC上求作两个点M、N,使得△PMN的周长最小(不写作法,保留作图痕迹),则△PMN的最小值为______.
已知两个等腰直角△ABC和△CDE,它们的两个直角顶点B、D在直线MN上,过点A、E分别作AG⊥MN,EF⊥MN,垂足分别为G、F.
(1)如图1,当△ABC和△CDE在△BCD的外部时,请你探索线段EF、DB、AG之间的数量关系,其数量关系为______.
(2)如图2,将图1中的△ABC沿BC翻折,其他条件不变,那么(1)中的结论是否仍然成立?若成立,请你给出证明,若不成立,请探索它们的数量关系,并说明理由.
在等腰△ABC中,已知AB=AC,BD⊥AC于D.
(1)若∠A=48°,求∠CBD的度数;
(2)若BC=15,BD=12,求AB的长.