满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一...

如图,在RtABC中,∠ACB90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MN于点E,垂足为F,连接CDBE.

(1)求证:CEAD

(2)DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

 

(1)证明见解析;(2)四边形BECD是菱形.理由见解析;(3)当∠A=45°时,四边形BECD是正方形,理由:见解析. 【解析】 (1)由BC⊥AC,DE⊥BC,得到DE∥AC,从而判断出四边形ADEC是平行四边形.即可, (2)先判断出△BFD≌△CFE,再判断出BC和DE垂直且互相平分,得到四边形BECD是菱形. (3)先判断出∠CDB=90°,从而得到有一个角是直角的菱形是正方形. 解析:(1)证明:∵直线m∥AB, ∴EC∥AD. 又∵∠ACB=90°, ∴BC⊥AC. 又∵DE⊥BC, ∴DE∥AC. ∵EC∥AD,DE∥AC, ∴四边形ADEC是平行四边形. ∴CE=AD. (2)当点D是AB中点时,四边形BECD是菱形. 证明:∵ D是AB中点, ∴DB=DA 又∵直线m∥AB,CE=AD ∴DB= CE,DB ∥ CE ∴四边形BDCE是平行四边形 又∵DE⊥BC ∴四边形BECD是菱形 (3)当∠A的大小是45°时,四边形BECD是正方形.  
复制答案
考点分析:
相关试题推荐

如图,ABC中,点O是边AC上一个动点,过O作直线MNBC.设MN交ACB的平分线于点E,交ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

 

查看答案

如图1,在△ABC和△EDC中,ACCECBCD;∠ACB=∠DCE90°ABCE交于FEDABBC,分别交于MH

(1)求证:CFCH

(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE45°时,试判断四边形ACDM是什么四边形?并证明你的结论.

 

查看答案

如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE已知BAC=30°,EFAB,垂足为F,连接DF

(1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形

 

 

查看答案

如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

 

查看答案

如图,在四边形ABCD中,∠ADC=∠ABC90°ADCDDPABP.若四边形ABCD的面积是18,则DP的长是________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.