满分5 > 初中数学试题 >

已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,...

已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.

(1)求∠P的度数;

(2)若点D是弧AB的中点,连接CDAB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)

 

(1)∠P=30°;(2)31.4. 【解析】 (1)连接OC,根据圆的切线的性质可得∠2+∠P=90°,根据等腰三角形的性质可得∠P=∠CAO,再根据三角形外角的性质可得∠2=2∠P,进而可求出∠P的度数;(2)连接AD,根据等弧对等角得到∠ACD=∠DAE,故△ACD∽△DAE,然后根据相似比求出AD的长,再根据“直径所对的角是90°”以及AD=BD得到Rt△ADB是等腰直角三角形,根据等腰直角三角形的性质求出OA的长,进而可求出⊙O的面积. (1)连接, 为的切线, ,即, , , , , 又是的一个外角, , , ; (2)连接, 为的中点, , , ,即, , , , , 是的直径, 为等腰直角三角形, , , .
复制答案
考点分析:
相关试题推荐

如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点PPBl于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A的中点.

(1)求证:直线l是⊙O的切线;

(2)若PA=6,求PB的长.

 

查看答案

已知AD为O的直径,BC为O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.

(1)求证:△ABM∽△MCD;

(2)若AD=8,AB=5,求ME的长.

 

查看答案

如图,△ABC三个顶点分别为A(0,﹣3),B(3,﹣2),C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.

(1)画出△ABC向上平移6个单位得到的△A1B1C1

(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1.

 

查看答案

在下列三个正方形网格图中,△ABC的顶点和另两条线段的端点都在格点上,以给定的线段为一边,分别在图2和图3中各画出一个三角形,使所画的三角形都与△ABC相似,并说明所画三角形与△ABC的相似比.

 

查看答案

已知,且,则的值为__________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.