如果一个四位数的千位数字与十位数学相同,百位数字与个位数字相同,则称这个四位数为“循环四位数”,如1212,5252,6767, …等都是“循环四位数”,如果将一个“循环四位数”的百位数字与千位数字,个位数字与十位数字都交换位置,得到一个新四位数,我们把这个新四位数叫做“原循环四位数的对应数”,如果原循环四位数的百位数字是0,则忽略交换位置后首位的“0”,即它的对应数就是首位“0”忽略后的三位数,如1212的对应数为2121,5252的对应数为2525,1010的对应数为101.
(1)任意写一个“循环四位数”及它的“对应数”;猜想任意一个“循环四位数”与它的“对应数”的差是否都能被101整除?并说明理由;
(2)一个“循环四位数”的千位数字为x(1≤x≤9),百位数字为y(1≤y≤9,且y<x),若这个循环四位数与它的对应数的差能被404整除,求y与x应满足的数量关系.
如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.
(1) 试说明∠AOC与∠BOD的大小关系并说明理由;
(2) 求∠COE的度数.
常州每年举行一次“一袋牛奶的暴走”公益活动,用步行的方式募集善款,其中挑战型路线”的起点是淹城站,并沿着规定的线路到达终点吾悦国际站.甲、乙两组市民从起点同时出发,已知甲组的速度为6km/h,乙组的速度为5km/h,当甲组到达终点后,立即以3km/h的速度按原线路返回,并在途中的P站与乙组相遇,P站与吾悦国际站之间的路程为1.5km
(1)求“挑战型路线”的总长;
(2)当甲组到达终点时,乙组离终点还有多少路程?
如图,四边形ABCD和四边形CEFG都是长方形,各边长如图示,连接BD、BF我们将得到一个美丽的“金枪鱼”图案,根据图中所标数据,请用含字母a和b的代数式表示“金枪鱼”(阴影部分)的面积。(结果要求化为最简)
如图,点C是线段AB上的一点,延长线段 AB到点D,使BD=CB.
(1)请依题意补全图形;
(2)若AD=7,AC=3,求线段DB的长.
解方程
(1) (2).