满分5 > 初中数学试题 >

已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线...

已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点AAE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为EBED;SAPD+SAPB=1+.其中正确结论的序号是(  )

A. ①②③    B. ①②④    C. ②③④    D. ①③④

 

A 【解析】 ①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等; ②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF; ③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证; ④连接BD,求出△ABD的面积,然后减去△BDP的面积即可. ①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°, ∴∠EAB=∠PAD, 又∵AE=AP,AB=AD, ∵在△APD和△AEB中, ∴△APD≌△AEB(SAS); 故此选项成立; ③∵△APD≌△AEB, ∴∠APD=∠AEB, ∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE, ∴∠BEP=∠PAE=90°, ∴EB⊥ED; 故此选项成立; ②过B作BF⊥AE,交AE的延长线于F, ∵AE=AP,∠EAP=90°, ∴∠AEP=∠APE=45°, 又∵③中EB⊥ED,BF⊥AF, ∴∠FEB=∠FBE=45°, 又∵BE= , ∴BF=EF= , 故此选项正确; ④如图,连接BD,在Rt△AEP中, ∵AE=AP=1, ∴EP= , 又∵PB=, ∴BE=, ∵△APD≌△AEB, ∴PD=BE=, ∴S△ABP+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣×DP×BE=×(4+)﹣××=+. 故此选项不正确. 综上可知其中正确结论的序号是①②③, 故选:A.
复制答案
考点分析:
相关试题推荐

如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥ABE,PF⊥ACF,MEF中点,则AM的最小值为(  )

A.     B.     C.     D.

 

查看答案

如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为(  )

A.     B.     C.     D.

 

查看答案

如图,ABCD的对角线交于点,且AC 3,那么AC的长为

A.     B.     C. 3    D. 4

 

查看答案

小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱, 却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程(   

A. - =1    B. -  =1

C. - =1    D. - =1

 

查看答案

关于x的方程无解,则m的值为(  )

A. ﹣5    B. ﹣8    C. ﹣2    D. 5

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.