满分5 > 初中数学试题 >

如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<...

如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为      (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

 

(1)(m,2m﹣5);(2)S△ABC =﹣;(3)m的值为或10+2. 【解析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解; (2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=4,可得出点B的坐标为(m+2,4a+2m−5),设BD=t,则点C的坐标为(m+2+t,4a+2m−5−t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值; (3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−5≤m≤2m−2,即2≤m≤5时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−5,即m>5时,x=2m−5时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论. (1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5, ∴抛物线的顶点坐标为(m,2m﹣5), 故答案为:(m,2m﹣5); (2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示, ∵AB∥x轴,且AB=4, ∴点B的坐标为(m+2,4a+2m﹣5), ∵∠ABC=135°, ∴设BD=t,则CD=t, ∴点C的坐标为(m+2+t,4a+2m﹣5﹣t), ∵点C在抛物线y=a(x﹣m)2+2m﹣5上, ∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5, 整理,得:at2+(4a+1)t=0, 解得:t1=0(舍去),t2=﹣, ∴S△ABC=AB•CD=﹣; (3)∵△ABC的面积为2, ∴﹣=2, 解得:a=﹣, ∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5. 分三种情况考虑: ①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2, 整理,得:m2﹣14m+39=0, 解得:m1=7﹣(舍去),m2=7+(舍去); ②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=; ③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2, 整理,得:m2﹣20m+60=0, 解得:m3=10﹣2(舍去),m4=10+2. 综上所述:m的值为或10+2.
复制答案
考点分析:
相关试题推荐

如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣4,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为(  )

A.     B. 2    C. 3    D. 4

 

查看答案

如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须(  )

A. 大于60°    B. 小于60°    C. 大于30°    D. 小于30°

 

查看答案

Windows2000下有一个有趣的扫雷游戏.如图是扫雷游戏的一部分,说明:图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷.现在还剩下三个方格未被探明,其他地方为安全区(包括有数字的方格),则三个方格中有地雷概率最大的方格是(      )

 

2

2

 

 

 

 

 

 

A. A    B. B    C. C    D. 无法确定

 

查看答案

如图,抛物线过点和点,且顶点在第四象限,设,则的取值范围是(   ).

A.     B.     C.     D.

 

查看答案

函数先向右平移1个单位,再向下平移2个单位,所得函数解析式是(     )

A.     B.

C.     D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.