如图,抛物线与x轴交于A、B两点,与y轴交于点C(0,3)
(1)求该抛物线的解析式;
(2)点为该抛物线上的一点、且在第二象限内,连接,若,求点的坐标;
(3)若点为线段上一动点,试求的最小值.
如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC.
(1)求抛物线的函数关系式;
(2)点N为抛物线上的一个动点,过点N作NP⊥x轴于点P,设点N的横坐标为t(),求△ABN的面积S与t的函数关系式;
(3)若且时△OPN∽△COB,求点N的坐标.
如图所示,
(1)正方形及等腰有公共顶点,,连接、.将绕点旋转,在旋转过程中,、具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形变为矩形,等腰变为,且,,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形变为平行四边形,将变为,且,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用表示出线段、的数量关系,用表示出直线、形成的锐角.
如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.
(1)求抛物线的解析式及顶点坐标;
(2)在轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.
(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.
如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣4,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为( )
A. B. 2 C. 3 D. 4