如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行
A.8米 B.10米 C.12米 D.14米
一直角三角形的两边长分别为3和4.则第三边的长为( )
A. 5 B. C. D. 5或
如图,是斜边上的中线,过点垂直于的直线交于,交延长线于.
(1)求证:;
(2)求证:.
如图,在同一平面内,将两个全等的等腰直角和摆放在一起,为公共顶点,,它们的斜边长为2,若固定不动,绕点旋转,、与边的交点分别为、(点不与点重合,点不与点重合),设,.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对加以证明.
(2)求与的函数关系式,直接写出自变量的取值范围.
在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字-1,-2,1.现从甲袋中任意摸出一个小球,记其标有的数字为,再从乙袋中任意摸出一个小球,记其标有的数字为,以此确定点的坐标.
(1)请你用画树状图或列表的方法,写出点所有可能的坐标;
(2)求点落在函数的图像上的概率.
如图,关于的二次函数的图像与轴交于点和点,与轴交于点,抛物线的对称轴与轴交于点.
(1)求二次函数的表达式;
(2)在轴上是否存在一点,使为等腰三角形?若存在,请求出点的坐标;
(3)有一个点从点出发,以每秒1个单位的速度在上向点运动,另一个点从点与点同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点到达点时,点、同时停止运动,问点、运动到何处时,面积最大,试求出最大面积.