在4×4网格中,∠α的位置如图所示,则tan的值为( )![]()

A.
B.
C. 2 D.
![]()
在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是( )
A. cosA=
B. tanA=
C. sinA=
D. cosA=
![]()
sin45°的值等于( )
A.
B. 1 C.
D. ![]()
的值为( )
A.
B.
C.
D. ![]()
如图,直线上有![]()
,![]()
两点,![]()
,![]()
是线段![]()
上的一点,![]()
.![]()

(1)![]()
,![]()
![]()
;![]()
(2)若点是直线![]()
上一点,且满足![]()
,求![]()
的长;![]()
(3)若动点,![]()
分别从点![]()
,![]()
同时出发,向右运动,点![]()
的速度为![]()
,点![]()
的速度为![]()
.设运动时间为![]()
,当点![]()
与点![]()
重合时,![]()
,![]()
两点停止运动.![]()
①当为何值时,![]()
?![]()
②当点经过点![]()
时,动点![]()
从点![]()
出发,以![]()
的速度也向右运动.当点![]()
追上点![]()
后立即返回,以![]()
的速度向点![]()
运动,遇到点![]()
后再立即返回,以![]()
的速度向点![]()
运动,如此往返.当点![]()
与点![]()
重合时,![]()
,![]()
两点停止运动,此时点![]()
也停止运动.在此过程中,请直接写出点![]()
运动的总路程.![]()
如图①,是直线![]()
上的一点,![]()
是直角,![]()
平分![]()
.![]()

(1)若,则![]()
的度数为 ;![]()
(2)将图①中的绕顶点![]()
顺时针旋转至图②的位置,其他条件不变,探究![]()
和![]()
的度数之间的关系,写出你的结论,并说明理由;![]()
(3)将图①中的绕顶点![]()
顺时针旋转至图③的位置,其他条件不变,直接写出![]()
和![]()
的度数之间的关系.![]()
