某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):
x(人) | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | … |
y(元) | ﹣3000 | ﹣2000 | ﹣1000 | 0 | 1000 | 2000 | … |
(1)在这个变化过程中,______是自变量,______是因变量;
(2)观察表中数据可知,每月乘客量达到_______人以上时,该公交车才不会亏损;
(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?
如图①,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②
(1)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;
(2)当E移动3.5秒后停止,求此时△ABE的面积.
小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:
(1)小红家到舅舅家的路程是______米,小红在商店停留了______分钟;
(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分
(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?
△ABC底边BC上的高为16cm,当BC的长x(cm)从小到大变化时,△ABC的面积y(cm2)也随之发生了变化
(1)在这个变化过程中,常量是_____,自变量是_____,因变量是_____;
(2)写出y与x之间的关系式为______,y是x的_____函数;
(3)当x=5cm时,y=______cm2;当x=15cm时,y=_____cm2;y随x的增大而______.
如图,点A的坐标为(﹣,0),点B在直线y=x上运动,当线段AB最短时点B的坐标为( )
A. (﹣,﹣) B. (﹣,﹣)
C. (,-) D. (0,0)
某长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定的质量,则需购买行李票,行李费用y(元)是行李质量x(千克)的一次函数,其图象如图所示.旅客最多可免费携带的行李质量是( )千克.
A. 60 B. 50 C. 40 D. 30