如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣4,8),对角线AC⊥x轴于点C,点D在y轴上,求直线AB的解析式.
如图,在平面直角坐标系中,过点的直线交轴正半轴于点,将直线绕着点顺时针旋转后,分别与轴轴交于点、.
(1)若,求直线的函数关系式;
(2)连接,若的面积是5,求点的运动路径长.
如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△ABD的面积是4.求证:四边形ABCD是矩形.
已知一次函数y=(2m+1)x+m﹣3.
(1)若这个函数的图象经过原点,求m的值;
(2)若这个函数的图象经过一、三、四象限,求m的取值范围.
已知一次函数y=2x﹣6,
(1)画出该函数的图象.
(2)判断(4,3)是否在此函数的图象上.
(3)观察画出的图象,说一说当x为何值时y<0?
已知y=(k﹣1)xIkI+(k2﹣4)是一次函数.
(1)求k的值;
(2)求x=3时,y的值;
(3)当y=0时,x的值.