已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.
(1)当点C横坐标为4时,求点E的坐标;
(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;
(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.
为迎接:“国家卫生城市”复检,某市环卫局准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.
(1)求每个A型垃圾箱和B型垃圾箱各多少元?
(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.
①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;
②当买A型垃圾箱多少个时总费用最少,最少费用是多少?
如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,点E是BC边上一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE.
(1)如图1,①请画出满足题意的点F,保留痕迹,不写作法;
②依据你的作图,证明:DF=BE.
(2)如图2,若点E是BC边中点,请只用一把无刻度的直尺作线段FG,使得FG∥BD,分别交AD、AB于点F、点G.
如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.
(1)求证:四边形ABEF为菱形;
(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.
已知函数y=x+(x>0),它的图象犹如老师的打钩,因此人称对钩函数.下表是y与x的几组对应值:
x | 1 | 2 | 3 | 4 | |||
y | 4 | 3 | 2 | 2 | 2 | 3 | 4 |
请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.
(1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:
序号 | 函数图象特征 | 函数变化规律 |
示例1 | 在直线x=1右侧,函数图象呈上升状态 | 当x>1时,y随x的增大而增大 |
示例2 | 函数图象经过点(2,2) | 当x=2时,y=2 |
① | 函数图象的最低点是(1,2) |
|
② | 在直线x=1左侧,函数图象呈下降状态 |
|
(3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为 .
如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.
(1)求证:四边形AGPH是矩形;
(2)在点P的运动过程中,GH的长度是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.