在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.
(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;
(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;
(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.
如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=______.
如图,已知桥拱形状为抛物线,其函数关系式为y=﹣x2,当水位线在AB位置时,水面的宽度为12m,这时水面离桥拱顶部的距离是_____.
如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=4,则GH的长为______.
如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则AC的长为 .
对于二次函数y=x2﹣2mx﹣3,有下列结论:
①它的图象与x轴有两个交点;
②如果当x≤﹣1时,y随x的增大而减小,则m=﹣1;
③如果将它的图象向左平移3个单位后过原点,则m=1;
④如果当x=2时的函数值与x=8时的函数值相等,则m=5.
其中一定正确的结论是_______.(把你认为正确结论的序号都填上)