满分5 > 初中数学试题 >

如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,...

如图,在正方形ABCD中,EF分别是ABCD的中点,EGAFFHCE,垂足分别为GH,设AG=x,图中阴影部分面积为y,则yx之间的函数关系式是(  )

A. y=3x2    B. y=4x2    C. y=8x2    D. y=9x2

 

C 【解析】 设正方形的边长为2a,易证四边形AFCE是平行四边形,所以四边形EHFG是矩形,由∠AEG=∠BCE得到等式,从而可用x表示出EG,接着用x表示EH,从而可求出y与x之间的关系式. 【解析】 设正方形的边长为2a, ∴BC=2a,BE=a, ∵E、F分别是AB、CD的中点, ∴AE=CF, ∵AE∥CF, ∴四边形AFCE是平行四边形, ∴AF∥CE, ∵EG⊥AF,FH⊥CE, ∴四边形EHFG是矩形, ∵∠AEG+∠BEC=∠BCE+∠BEC=90°, ∴∠AEG=∠BCE, ∴tan∠AEG=tan∠BCE, ∴, ∴EG=2x, ∴由勾股定理可知:AE=x, ∴AB=BC=x, ∴CE=5x, 易证:△AEG≌△CFH, ∴AG=CH, ∴EH=EC-CH=4x, ∴y=EG•EC=8x2, 故选C.
复制答案
考点分析:
相关试题推荐

对于二次函数y=−(x−1)2+2的图象与性质,下列说法正确的是(   )

A. 对称轴是直线x=1,最小值是2    B. 对称轴是直线x=1,最大值是2

C. 对称轴是直线x=−1,最小值是2    D. 对称轴是直线x=−1,最大值是2

 

查看答案

在下列y关于x的函数中,一定是二次函数的是(  )

A. y=2x2    B. y=2x2    C. y=ax2    D.

 

查看答案

如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是(     )

A. ①③    B. ②③    C. ②④    D. ②③④

 

查看答案

如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.

(1)求证:△BDE∽△CEF;

(2)当点E移动到BC的中点时,求证:FE平分∠DFC.

 

查看答案

已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DAF,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.