满分5 > 初中数学试题 >

(1)计算:; (2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD...

(1)计算:

(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且EFG=90°.求证:EBF∽△FCG.

 

(1)(2)证明见解析 【解析】 试题(1)先把分母因式分解,再把除法运算化为乘法运算,然后约分即可; (2)先根据正方形的性质得∠B=∠C=90°,再利用等角的余角相等得∠BEF=∠CFG,然后根据有两组角对应相等的两个三角形相似可判定△EBF∽△FCG. 试题解析:(1)原式= =; (2)∵四边形ABCD为正方形, ∴∠B=∠C=90°, ∴∠BEF+∠BFE=90°, ∵∠EFG=90°, ∴∠BFE+∠CFG=90°, ∴∠BEF=∠CFG, ∴△EBF∽△FCG.
复制答案
考点分析:
相关试题推荐

小明在某次作业中得到如下结果:

sin2sin283°≈0.1220.9920.9945

sin222°sin268°≈0.3720.9321.0018

sin229°sin261°≈0.4820.8720.9873

sin237°sin253°≈0.6020.8021.0000

sin245°sin245°1.

据此,小明猜想:对于任意锐角α,均有sin2αsin2(90°α)1.

(1)α30°时,验证sin2αsin2(90°α)1是否成立;

(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.

 

查看答案

自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:

使用次数

0

1

2

3

4

5(含5次以上)

累计车费

0

0.5

0.9

1.5

同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:

使用次数

0

1

2

3

4

5

人数

5

15

10

30

25

15

)写出的值;

)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.

 

查看答案

如图,在一笔直的沿湖道路上有两个游船码头,观光岛屿在码头北偏东的方向,在码头北偏西的方向,.游客小张准备从观光岛屿乘船沿回到码头或沿回到码头,设开往码头的游船速度分别为,若回到所用时间相等,则          (结果保留根号).

 

查看答案

如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tanABO的值为_____

 

查看答案

(2014陕西)用科学计算器计算.(结果精确到0.01)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.