满分5 > 初中数学试题 >

定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该...

定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.

(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.

(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.

(3)在(2)的条件下,点Q在抛物线C上,求满足条件SABQ=SABPQ点(异于点P)的坐标.

 

(1)抛物线y=﹣x2+1的勾股点的坐标为(0,1);(2)y=﹣x2+x;(3)满足条件的点Q有3个:(3,)或(2+,﹣)或(2﹣,﹣). 【解析】 试题(1)根据抛物线勾股点的定义即可得; (2)作PG⊥x轴,由点P坐标求得AG=1、PG=、PA=2,由tan∠PAB==知∠PAG=60°,从而求得AB=4,即B(4,0),待定系数法求解可得; (3)由S△ABQ=S△ABP且两三角形同底,可知点Q到x轴的距离为,据此求解可得. 试题解析:(1)抛物线的勾股点的坐标为(0,1); (2)抛物线过原点,即点A(0,0),如图,作PG⊥x轴于点G,∵点P的坐标为(1,),∴AG=1、PG=,PA= = =2,∵tan∠PAB==,∴∠PAG=60°,在Rt△PAB中,AB= = =4,∴点B坐标为(4,0),设y=ax(x﹣4),将点P(1,)代入得:a=﹣,∴y=﹣x(x﹣4)= ; (3)①当点Q在x轴上方时,由S△ABQ=S△ABP知点Q的纵坐标为,则有=,解得:x1=3,x2=1(不符合题意,舍去),∴点Q的坐标为(3,); ②当点Q在x轴下方时,由S△ABQ=S△ABP知点Q的纵坐标为﹣,则有=﹣,解得:x1=2+,x2=2﹣,∴点Q的坐标为(2+,﹣)或(2﹣,﹣); 综上,满足条件的点Q有3个:(3,)或(2+,﹣)或(2﹣,﹣).  
复制答案
考点分析:
相关试题推荐

已知抛物线C1:y=ax2﹣4ax﹣5(a0).

(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;

(2)试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;

将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;

(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.

 

查看答案

(1)计算:

(2)如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且EFG=90°.求证:EBF∽△FCG.

 

查看答案

小明在某次作业中得到如下结果:

sin2sin283°≈0.1220.9920.9945

sin222°sin268°≈0.3720.9321.0018

sin229°sin261°≈0.4820.8720.9873

sin237°sin253°≈0.6020.8021.0000

sin245°sin245°1.

据此,小明猜想:对于任意锐角α,均有sin2αsin2(90°α)1.

(1)α30°时,验证sin2αsin2(90°α)1是否成立;

(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.

 

查看答案

自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:

使用次数

0

1

2

3

4

5(含5次以上)

累计车费

0

0.5

0.9

1.5

同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:

使用次数

0

1

2

3

4

5

人数

5

15

10

30

25

15

)写出的值;

)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.

 

查看答案

如图,在一笔直的沿湖道路上有两个游船码头,观光岛屿在码头北偏东的方向,在码头北偏西的方向,.游客小张准备从观光岛屿乘船沿回到码头或沿回到码头,设开往码头的游船速度分别为,若回到所用时间相等,则          (结果保留根号).

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.