满分5 > 初中数学试题 >

矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处. ...

矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.

①求证:OCP∽△PDA;

②若OCPPDA的面积比为1:4,求边AB的长.

(2)如图2,在(1)的条件下,擦去AOOP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MNPB于点F,作MEBP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

 

(1)①证明见解析;②10;(2)线段EF的长度不变,它的长度为2. . 【解析】 试题(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长; (2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB的长,最后代入EF=PB即可得出线段EF的长度不变. 试题解析:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴=,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得 :,解得:x=5,∴CD=AB=AP=2OP=10,∴边CD的长为10; (2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB==,∴EF=PB=,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为.
复制答案
考点分析:
相关试题推荐

折纸与证明﹣﹣﹣用纸折出黄金分割点:

第一步:如图(1),先将一张正方形纸片ABCD对折,得到折痕EF;再折出矩形BCFE的对角线BF.

第二步:如图(2),将AB边折到BF上,得到折痕BG,试说明点G为线段AD的黄金分割点(AGGD

 

查看答案

已知:如图,在RtABC中,∠ACB=90°CDAB上的中点,过点BBECD,垂足为E.

求证:ABC∽△BCE.

 

查看答案

如图,在RtABC中,∠BAC=90°ADBC于点D,点OAC边上一点,连接BOAD于点FOEOBBC边于点E.求证:ABF∽△COE.

 

查看答案

已知,把RtABCRtDEF按图1摆放,(点CE点重合),点BCEF始终在同一条直线上,∠ACB=EDF=90°,∠DEF=45°AC=8BC=6EF=10,如图2DEF从图1出发,以每秒1个单位的速度沿CBABC匀速运动,同时,点PA出发,沿AB以每秒1个单位向点B匀速移动,ACDEF的直角边相交于Q,当P到达终点B时,DEF同时停止运动,连接PQ,设移动的时间为ts).解答下列问题:

(1)DEF在平移的过程中,当点DRtABC的边AC上时,求t的值;

(2)在移动过程中,是否存在APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.

(3)在移动过程中,当0t≤5时,连接PE,是否存在PQE为直角三角形?若存在,求出t的值;若不存在,说明理由.

 

查看答案

如图,RtABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.

(1)若BPQABC相似,求t的值;   

(2)连接AQ、CP,若AQCP,求t的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.