满分5 > 初中数学试题 >

如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边A...

如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围. 

 

y=﹣4t2+24t(0<t<6) 【解析】 先根据两点移动速度以及移动方向得出BP以及BQ的长;然后根据所求三角形的面积与时间的关系,得出S与t的函数关系式;最后根据动点在直角三角形的直角边上运动的时间,求出t的取值范围即可. △PBQ的面积S随出发时间t(s)成二次函数关系变化, ∵在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动, ∴BP=12﹣2t,BQ=4t, ∴△PBQ的面积S随出发时间t(s)的解析式为:y=(12﹣2t)×4t=﹣4t2+24t,(0<t<6).
复制答案
考点分析:
相关试题推荐

如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

 

查看答案

求函数的最值.

 

查看答案

如图,已知抛物线y=﹣x2+bx+cx轴交于点A(﹣10)和点B30),与y轴交于点C,连接BC交抛物线的对称轴于点ED是抛物线的顶点.

1)求此抛物线的解析式;

2)直接写出点C和点D的坐标;

3)若点P在第一象限内的抛物线上,且SABP4SCOE,求P点坐标.注:二次函数yax2+bx+ca≠0)的顶点坐标为.

 

查看答案

画函数y的图象.

 

查看答案

已知,二次函数的部分对应值如下表,则____.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.